Thermogenic methane release as a cause for the long duration of the PETM.
نویسندگان
چکیده
The Paleocene-Eocene Thermal Maximum (PETM) (∼56 Ma) was a ∼170,000-y (∼170-kyr) period of global warming associated with rapid and massive injections of 13C-depleted carbon into the ocean-atmosphere system, reflected in sedimentary components as a negative carbon isotope excursion (CIE). Carbon cycle modeling has indicated that the shape and magnitude of this CIE are generally explained by a large and rapid initial pulse, followed by ∼50 kyr of 13C-depleted carbon injection. Suggested sources include submarine methane hydrates, terrigenous organic matter, and thermogenic methane and CO2 from hydrothermal vent complexes. Here, we test for the contribution of carbon release associated with volcanic intrusions in the North Atlantic Igneous Province. We use dinoflagellate cyst and stable carbon isotope stratigraphy to date the active phase of a hydrothermal vent system and find it to postdate massive carbon release at the onset of the PETM. Crucially, however, it correlates to the period within the PETM of longer-term 13C-depleted carbon release. This finding represents actual proof of PETM carbon release from a particular reservoir. Based on carbon cycle box model [i.e., Long-Term Ocean-Atmosphere-Sediment Carbon Cycle Reservoir (LOSCAR) model] experiments, we show that 4-12 pulses of carbon input from vent systems over 60 kyr with a total mass of 1,500 Pg of C, consistent with the vent literature, match the shape of the CIE and pattern of deep ocean carbonate dissolution as recorded in sediment records. We therefore conclude that CH4 from the Norwegian Sea vent complexes was likely the main source of carbon during the PETM, following its dramatic onset.
منابع مشابه
What caused the long duration of the Paleocene-Eocene Thermal Maximum?
[1] Paleorecords show that the Paleocene-Eocene Thermal Maximum (PETM, 56 Ma) was associated with a large carbon cycle anomaly and global warming >5 K, which persisted for at least 50 kyr. Conventional carbon cycle/climate models that include a single initial carbon input pulse over 10 kyr fail to reproduce the long duration of the PETM without invoking additional, slow carbon release over more...
متن کاملBeyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum
Extreme global warmth and an abrupt negative carbon isotope excursion during the Paleocene–Eocene Thermal Maximum (PETM) have been attributed to a massive release of methane hydrate from sediments on the continental slope [G.R. Dickens, J.R. O'Neil, D.K. Rea, R.M. Owen, Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene, Paleoceanograp...
متن کاملUncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release?
The Paleocene/Eocene thermal maximum (PETM) was a time of rapid global warming in both marine and continental realms that has been attributed to a massive methane (CH4) release from marine gas hydrate reservoirs. Previously proposed mechanisms for this methane release rely on a change in deepwater source region(s) to increase water temperatures rapidly enough to trigger the massive thermal diss...
متن کاملTemperature and atmospheric CO2 concentration estimates through the PETM using triple oxygen isotope analysis of mammalian bioapatite.
The Paleocene-Eocene Thermal Maximum (PETM) is a remarkable climatic and environmental event that occurred 56 Ma ago and has importance for understanding possible future climate change. The Paleocene-Eocene transition is marked by a rapid temperature rise contemporaneous with a large negative carbon isotope excursion (CIE). Both the temperature and the isotopic excursion are well-documented by ...
متن کاملPaleocene-Eocene thermal maximum and the opening of the Northeast Atlantic.
The Paleocene-Eocene thermal maximum (PETM) has been attributed to a sudden release of carbon dioxide and/or methane. 40Ar/39Ar age determinations show that the Danish Ash-17 deposit, which overlies the PETM by about 450,000 years in the Atlantic, and the Skraenterne Formation Tuff, representing the end of 1 +/- 0.5 million years of massive volcanism in East Greenland, are coeval. The relative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 43 شماره
صفحات -
تاریخ انتشار 2016